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Abstract

Text-to-video diffusion models synthesize spatial appearance
and temporal motion by progressively denoising from noise,
yet the distribution of these two dimensions across timesteps
is not fully characterized. We present a systematic and quanti-
tative study that measures how appearance editing and motion
preservation trade off when new conditions are applied over
specified ranges of timesteps. Across diverse architectures,
we observe a consistent pattern in which motion is established
in early steps and appearance is refined in later steps, yielding
an operational boundary in timestep space that disentangles
temporal and spatial factors. Building on this property, we in-
troduce a one-shot motion customization method that restricts
training and inference to early steps and achieves strong mo-
tion transfer without auxiliary debiasing modules or special-
ized objectives. Our spatiotemporal disentanglement prop-
erty can facilitate broad applications of appearance or motion
transfer and editing, and our timestep-constrained method can
be easily integrated into other motion customization methods.

Introduction
Diffusion models (Ho, Jain, and Abbeel 2020) have achieved
remarkable performance in image and video synthesis with
high quality and extensive generalization. Large-scale pre-
trained foundation models have facilitated many down-
stream applications of controllable generation, such as edit-
ing (Zhang and Agrawala 2023; Tumanyan et al. 2023) and
customization (Ruiz et al. 2023; Gal et al. 2022). In contrast
to images, videos consist of additional temporal information
to spatial features, and their decoupling becomes critical as
different tasks demands tampering on different aspects of the
media. On the other hand, the progressive process of spatial
and temporal signals along the denoising process makes it
challenge to decompose them.

Many effort has been made toward analyzing and extract-
ing certain spatial attributes from image diffusion models
at different timesteps (Hertz et al. 2022a; Luo et al. 2023a;
Yue et al. 2024a; Qian et al. 2024; Lee et al. 2025a; Liang
et al. 2025). However its temporal counterpart is less re-
vealed. (Xiao et al. 2024; Li et al. 2024; Wu et al. 2025a)
have observed that motions are usually constructed at early
denoising timesteps. However, there still lack systematic and
quantitative analyses. In this work, we look to decompose
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Figure 1: Spatiotemporal disentanglement in video diffusion
models. Our finding reveals that motion is primarily encoded
in the early denoising timesteps. Given a reference video
(top) and its ground truth caption (blue), we perform DDIM
inversion and then denoise with a new prompt that modi-
fies only the subject (yellow). The resampled videos show
different subject editing and motion preservation results by
applying the original or new prompts at different timesteps.

the appearance and motion of text-to-video diffusion mod-
els. Specifically, we explore the distribution of spatiotempo-
ral information along the diffusion timesteps.

Our analysis primarily involves comparing between clean
and noisy distributions across different timesteps. Given the
difficulty to measure the appearance and motion similarity
directly on noised samples, we design a preliminary exper-



iment that leads to tampered RGB videos. Specifically, we
invert the original video to noisy latent, and then resam-
ple it with a new text prompt whose appearance descrip-
tion is changed over certain denoising timesteps. While such
method is not able to precisely serve as a high-quality edit-
ing tool (as demonstrated in Mokady et al.), it indicates the
impact of appearance construction as distributed along the
denoising process. Our findings confirm that spatial infor-
mation is destroyed first when diffusing and construct last
when denoising, while temporal information is on the con-
trary. Notably, these dimensions are decoupled with a clear
threshold, enabling us to manipulate one attribute while pre-
serving the other.

We validate the spatiotemporal disentanglement property
on various denoising network architectures: ModelScope
(Wang et al. 2023a), which is U-Net based with dedicated
spatial and temporal attentions, Latte (Ma et al. 2024), which
is transformer based with dedicated spatial and temporal at-
tentions, and CogVideoX (Yang et al. 2024), which is trans-
former based with unified spatiotemporal attentions, and
they display consistent behaviors. We attribute the findings
to the association of most motions to non-local structure
movement: as Gaussian noise first filters out high frequency
and diffusion models first construct low frequency signals
such as global layouts in images when denoising, motions
are encoded at the early timesteps in video synthesis. Com-
pared to prior work that explicitly control the video editing
with exemplar depth, edge or optical flow (Chen et al. 2023;
Yang et al. 2023), our findings enable modeling the reference
motion along a continuous range of timesteps and reproduc-
ing it with temporal diversity such as movement velocity,
intensity and object position, camera perspective etc.

By exploiting our spatiotemporal disentanglement prop-
erty we facilitate one-shot video motion customization as
a downstream application, where the reference motion is
expected to be transferred to new subjects and scenarios
with temporal variety. Given only a single reference video
during training, this task is known to suffer from appear-
ance overfitting when modeling the desired motion, and
prior approaches usually rely on auxiliary modules or re-
formed losses to debias the unwanted spatial signals (Zhao
et al. 2023b; Ren et al. 2024). In contrast, we propose to
solely finetune the motion customization module with the
vanilla diffusion loss while constraining the range of train-
ing and inference timesteps to the early denoising stage. This
timestep constraint prevents appearance leakage from the
reference video despite the fusion of spatial attention and
full reconstruction loss and ensures the customization mod-
ule captures motion information only.

In summary, our main contributions are the following:

• We demonstrated the architecture-agnostic spatiotempo-
ral disentanglement along diffusion timesteps in pre-
trained video diffusion models, that motions are synthe-
sized in early denoising stage;

• Leveraging this property, we proposed a simple yet ef-
fective one-shot motion customization method that con-
strains the training and inference timestep range, obviat-
ing any extra spatial debiasing module or loss and easy

to be integrated into existing pipelines;
• We further extend our method to partial attention tun-

ing and direct tuning, enabling more efficient and flexible
motion customization paradigms.

Related Works
Diffusion Attribute Disentanglement
In the image domain, a number of studies analyze what dif-
ferent timesteps encode along the reverse process. Luo et al.
(2023b) aggregate multi-timestep and multi-scale features
and show complementary geometric and semantic cues for
correspondence. Stepwise spectral analyses report that low-
frequency content changes dominate at earlier steps while
high-frequency refinements appear later, which motivates
non-uniform sampling (Lee et al. 2025b). Beyond observa-
tion, several methods make timesteps an explicit supervision
axis. Yue et al. (2024b) learn timestep-aware representations
grounded in how attributes vanish during the forward nois-
ing. Step-aware preference alignment allocates feedback to
specific steps to better match human perception (Chen et al.
2024; Sun et al. 2024). Editing frameworks that intervene
per-step further support the utility of stepwise control for
separating layout from style (Hertz et al. 2022b).

In video diffusion, explicit evidence about timesteps is
emerging but remains less developed than in images. Xiao
et al. (2024) extract motion-aware features from pre-trained
text-to-video models and operate along the denoising trajec-
tory to guide motion without training, offering operational
support that early steps are effective for shaping coarse
motion and later steps can refine appearance. Personaliza-
tion work emphasizes preserving native motion while in-
jecting identity. Li et al. (2024) introduce an isolated iden-
tity adapter to maintain dynamics and semantics during cus-
tomization, which is consistent with scheduling appearance-
oriented updates late in sampling even though they do
not quantify a step boundary. Customization with explicit
early–late scheduling is exemplified by Wu et al. (2025a),
who reduce subject-learning influence in the early denoising
stage to preserve motion and restore it in the late stage to re-
cover appearance details. Our study complements these ef-
forts by providing a systematic and quantitative delineation
of when temporal motion and spatial appearance dominate
along the denoising timeline of pre-trained video diffusion
models.

Video Motion Customization
Video motion customization is the task to learn the motion
from the reference videos and adapt it to new subjects and
scenarios. Prior work has been developed for determinis-
tic video editing or motion transfer, which leverage global
structure control such as edge or depth map (Chen et al.
2023; Zhang et al.; Zhao et al. 2023a), optical flow (Yang
et al. 2023; Liang et al. 2024), and latent features (Geyer
et al. 2023; Ling et al. 2024). In contrast, video motion
customization finetunes a pre-trained text-to-video diffusion
model to adopt the desired motion and transfer it with both
temporal fidelity and diversity.



However, it is a common challenge that videos consist of
both spatial and temporal signals and video diffusion models
process them in fusion. This issue is more significant in one-
shot case since multiple reference videos sharing the same
motion concept provide diverse appearances that can offset
each other. To capture pure motion information from the ref-
erence videos, various approaches have been proposed. Zhao
et al. (2023b); Ren et al. (2024) incorporate an additional ap-
pearance debiasing module to exclude the unwanted appear-
ance. Wu et al. (2025b) designs a temporal-only loss based
on the latent frame features.

In comparison to prior work, we leverage our main find-
ing to demonstrate a video motion customization application
in one shot without auxiliary modules or special loss func-
tions. We instead achieve motion decoupling by constrain-
ing the tuning and inference denoising timesteps to exploit
our spatiotemporal disentanglement property in pre-trained
video diffusion models.

Spatiotemporal Disentanglement along
Denoising Timesteps

Preliminary
Diffusion Models Diffusion models (Ho, Jain, and Abbeel
2020) generate synthetic instances by sampling xT ∼
N (0, I) and iteratively applying a denoising process to ob-
tain x0 via

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t, c)

)
+ σtz, (1)

where t = T, ..., 1. ϵθ is a parameterized denoising neural
network with a condition c, z ∼ N (0, I) is random noise, σt

is the variance, and αt, ᾱt are hyperparameters defining the
noise schedule.

Text-to-Video Diffusion Models In text-to-image diffu-
sion models, c is a text prompt depicting the expected output
video, and a typical ϵθ comprises self-attentions and cross-
attentions to process the visual information with the condi-
tion incorporated. To synthesize sequential data consisting
of multiple images, ϵθ additionally involves cross-frame at-
tentions to regularize the temporal consistency.

DDIM Inversion In implicit diffusion models (DDIMs,
Song, Meng, and Ermon), the denoising process in Eq. 1
can be made deterministic by setting σt := 0. Then the de-
noising process can be inverted by expressing xt in terms of
xt−1 (Mokady et al. 2022), and ultimately producing from
an existing x0 its approximate sampling trajectory x{T,...,1},
which reconstructs itself following the denoising process.

Analysis Design
We aim to observe how the spatial and temporal attributes
of a video are processed at various timesteps in the diffu-
sion and denoising processes. However, this is not trivial as
categorizing appearance and motion can be ambiguous in
general. And understanding from noisy videos at intermedi-
ate diffusion timesteps further lifts its difficulty. Therefore,
we design to leverage the inversion approach and tamper the
resampling trajectory for feasible calculation and reference.

(a) Subject Edit. (b) Motion Preserve. (c) ModelScope

(d) Subject Edit. (e) Motion Preserve. (f) Latte

(g) Subject Edit. (h) Motion Preserve. (i) CogVideoX

Figure 2: Subject editing and motion preservation quality
of ModelScope, Latte and CogVideoX. Applying the new
subject editing prompt in longer timesteps always leads to
stronger new subject representation in the generated video.
However, starting resampling with the new prompt at early
timesteps significantly harms the motion preservation al-
though it doesn’t modify the motion description. The trade-
off curves show the optimal timesteps to decompose spa-
tial and temporal signals. This spatiotemporal property holds
consistently across different model architectures.

Specifically, given a video x0 and its ground truth caption
c, we start from DDIM inversion to acquire its noise latent
x̂T , such that the denoising network θ can faithfully recover
it via the original trajectory x0 =

∏1
t=T θ(x̂t|t, c). Next, we

tamper of c to c′ by changing its subject, and perform denois-
ing process with the edited condition x′

0 =
∏1

t=T θ(x̂t|t, c′).
While x′

0 is ideally expected to represent the new subject
with the original motion preserved as indicated by c′, this
process will in fact intervene the generated motion as well.
For example, [show a figure or subfigure for this].

Based on this, we propose to examine how the denois-
ing timesteps interact with the new text prompt to synthe-
size new appearance and original motion. To this end, we
perform the resampling process with c′ in a certain timestep
range, and the original c is used outside. Formally, we de-
noise via x′′

0 =
∏1

t=T θ(x̂t|t, c′′t ), where c′′t = c′ when
t ∈ [τstart, τend] and otherwise c′′t = c. Then we measure
the appearance editing by the CLIP score (Hessel et al. 2021)
between x′′

0 and c′, and measure the motion preservation by
the optical flow similarity between x′′

0 and x0.
In this way, we leverage the text captions as comprehen-



sive spatiotemporal labels that are clear and easy to manipu-
late, and obviate direct calculations on noisy videos or com-
pare across different noise levels via diffusion inversion and
resampling in clean latent distribution. Note that although
this naive resampling is not able to perfectly edit the original
video reasonably and realistically, it can serve as an analytic
approach to exhibit the difference in spatial and temporal
impact across timesteps in our evaluation.

Experiment Setup
We consider full combination of all valid (τstart, τend) pairs
with an interval of 100 over the whole 1000 timesteps. A
visual example of this approach is shown in 1. Here we use
start timestep τstart = 600 and end timestep τend = 0. As a
result, our newly generated video preserves the information
from t ∈ [600, 1000] in the original video.

To fully reflect the editing improvement, we meaure the
CLIP score change where the base score between x0 and
c′ is subtracted, as x0 already have some resemblance to
c′ except the tampered subjects. We use the Lucas-Kanade
method for optical flow estimation, and calculate the aver-
age cosine similarity between the normalized vectors of all
frames. Both metrics are higher when the new video x′

0 bet-
ter represents the new subject in c′ or better preserves the
original motion in x0.

We conduct this experiments on three representative text-
to-video models with divergent denoising network archi-
tectures: ModelScope (Wang et al. 2023a) with U-Net and
dedicated spatial and temporal attentions, Latte (Ma et al.
2024) with transformer and dedicated spatial and temporal
attentions, and CogVideoX (Yang et al. 2024), with trans-
former and unified spatiotemporal attentions. We test on
all 76 videos from the Text-Guided Video Editing (TGVE)
competition dataset (Wu et al. 2023), which also provides
subject editing captions.

Results
In Fig. 2 we show the trade-off between CLIP score change
and optical flow similarity across all (τstart, τend) options.
The CLIP score change consistently improves whenever the
editing interval τstart − τend is longer, as this allows for
more sampling steps with the new prompt c′. Notably, for
any given τstart, the optimal τend is always 0. However,
τend does not matter as much for motion preservation. On
the contrary, the optical flow similarity increases as we de-
lay the sampling process to start from later timesteps. In
other words, sampling with the new condition c′ at ear-
lier timesteps, harms much its optical flow similarity to the
original video despite c′’s only modification on the subject.
Based on the observed effect of the subject editing prompt
of motion deviation from the original video, we claim that
motion signals are dominantly encoded in early denoising
timesteps in video diffusion models.

We draw the heatmaps of the appearance editing and mo-
tion preservation quality in Fig. 2. We can deduce from it the
dominant ranges of motion and appearance along the denois-
ing timesteps for each pre-trained model. τend is not signifi-
cant for motion preservation while being optimal for appear-
ance editing at 0, at which we therefore fix the end timestep.

Figure 3: One-shot video motion customization via denois-
ing timestep constraint. Leveraging our spatiotemporal dis-
entanglement property, we train LoRAs at only early de-
noising timesteps to model the reference motion without
appearance leakage. This single-stage fine-tuning approach
achieves surpassing performance without any additional de-
biasing modules, stages or losses. This even works for base
models with unified spatiotemporal attentions, where we add
LoRA on the full spatiotemporal sequence and it is still pre-
vented from overfitting on the reference appearance.

Given τend := 0, varying the start timestep τstart presents
a trade-off between representing the new subject and retain-
ing the original motion. That is, τstart reflects the threshold
of denoising timesteps where temporal and spatial signals
are encoded. This tradeoff is also depicted in Fig. 2 for each
base model. A smaller τstart leads to minimal shift in opti-
cal flow similarity, while CLIP score improves significantly.
A bigger τstart results in drastic loss in the motion informa-
tion from the original video. The threshold timestep for spa-
tiotemporal disentanglement thus lies somewhere along the
Pareto frontier. In following sections we denote τ = τstart
as this threshold. While its exact value varies across specific
models, it is consistently around 700 to 900.

Next, we demonstrate our spatiotemporal disentangle-
ment property in the downstream application of one-shot
video motion customization task.

One-Shot Video Motion Customization
Task Settings
Video motion customization is the task to customize a pre-
trained text-to-video diffusion model with specific motions
from given reference videos. Given the ambiguity of text
prompt control of temporal movements, motion customiza-
tion is the optimal way to replicate the exemplar motions
with new subjects and scenes. Previous methods of video
editing and motion transfer aim at generating deterministic
movements with precise frame-wise alignment, losing tem-
poral diversities such as motion velocity, intensity, subject
count and position, and camera perspective etc. In contrast,
motion customization demands tuning-based modeling of
the desired motions and leads to reproducing them with tem-
poral varieties, and thus achieves broader generalization to



Figure 4: Qualitative comparison of our motion disentanglement method to MotionDirector and Tune-A-Video. Our method
faithfully replicates the motion of the reference video while also editing the subject and background with superior quality to
other approaches. Without any additional spatial debiasing modules or stages, our method is stable and robust with minimal
semantic discrepancy (e.g. the snow ground and hat-like reef by MotionDirector).

fit on more diverse new subjects and scenes, similar to image
customization over deterministic patch stitching.

In our application, we focus on the one-shot customiza-
tion case, where only one reference video is provided. The
main challenge in one-shot motion customization is model-
ing the reference motion without overfitting on the given ap-
pearance. Tuning on multiple videos with the similar motion
concept and diverse appearances, the customization module
will converge fast on the common information, i.e. the mo-
tions, while it learns both spatial and temporal signals with
the vanilla diffusion loss when training on a single video.
Leakage of the unwanted appearances into the motion cus-
tomization module will result in their deterministic repro-
duction in the generated videos, harming the freedom of syn-
thesizing novel spatial attributes with new prompts. Lever-
aging our spatiotemporal disentanglement property of video
diffusion models, we develop a targeted training method cir-
cumventing these issues to achieve high quality one-shot
motion customization with largely simplified tuning mod-
ules and pipelines.

Timestep Constrained Method
Prior diffusion-based motion customization methods typi-
cally apply LoRA on pre-trained temporal attention layers,
and finetune it across all timesteps t ∈ [1000, 0]. Based on
the spatiotemporal disentanglement along timesteps in video
diffusion models, where the motion information is primar-
ily processed in early denoising timesteps, we propose to
train the temporal LoRA with the groud truth caption in a
restricted timestep range t ∈ [1000, τ ]. τ is the aforemen-
tioned threshold between spatial and temporal signals along
the denoising process. We also constrain the LoRA applica-
tion during inference within the same timestep range, and
at other timesteps the denoising process is proceeded with
solely the base model. It worth noting that the text prompt
remains the same new prompt with modified appearances
and original motions throughout the inference.

The overall pipeline of our method is illustrated in Fig. 3.
Compared to previous methods that have to incorporate with
auxiliary modules, stages or losses to explicitly debias the
appearance learning out of the temporal tuning, our method
simplifies the pipeline to only one single temporal LoRA



Base Model τ
Text

Align.↑
Temp.

Const.↑
Pick

Score↑

ModelScope
(2023a)

1000 26.05 94.88 20.13
750 28.04 96.39 20.68
700 28.16 96.42 20.77
650 27.97 96.31 20.79
0 27.43 96.25 20.49

Latte
(2024)

1000 29.28 93.16 20.84
750 31.85 97.12 21.65
700 31.96 97.19 21.68
650 31.88 97.21 21.66

0 31.26 96.99 21.47

CogVideoX
(2024)

1000 28.15 96.69 20.65
950 30.14 98.11 21.09
900 29.93 98.10 21.00
850 29.61 97.76 20.92

0 29.67 97.41 21.30

Table 1: Ablating different timestep tuning range τ for one-
shot video motion customization, where the base model is
tuned at t ∈ [1000, τ ]. A smaller τ corresponds to a wider
range of denoising timesteps for finetuning. τ = 1000 refers
to the base model without tuning, and τ = 0 refers to tuning
the base model at all timesteps. The optimal τ for the down-
stream task aligns with the peak in our analysis in Fig. 2.

module, one single tuning stage and the vanilla diffusion re-
construction loss. We also show that our simplified pipeline
further facilitates flexible model parameter configurations
with stable tuning and consistent performance with mini-
mum appearance leakage. Furthermore, since our method
only constrains the training timesteps, it is very easy to co-
operate with other pipelines without any conflict of tuning
models or objectives.

Experiment Setup
Base models. We implement our training method on three
base T2V models: ModelScope (Wang et al. 2023a), Latte
(Ma et al. 2024), and CogVideoX (Yang et al. 2024). All
generate videos of 2 seconds and 16 frames, with 256× 256
resolution for ModelScope, 512 × 512 resolution for Latte,
and 480× 480 for CogVideoX. They all use a DDPM noise
scheduler with totally 1000 timesteps.

Datasets. To quantitatively evaluate our approach, we ap-
ply motion customization on all 76 videos in the Text-
Guided Video Editing (TGVE) competition dataset (Wu
et al. 2023) individually. We use the ground truth captions
as the training prompts and all 4 editing captions to synthe-
size novel videos at inference.

Metrics. We evaluate our generated videos by the fol-
lowing metrics: Text alignment calculates the CLIP Score
(Hessel et al. 2021) between the video frames and the new
prompts to measure the fidelity of the spatial attributes fol-
lowing the descriptions at inference. Temporal consistency
averages the pairwise CLIP embedding distances between

Method Text
Align.↑

Temp.
Const.↑

Pick
Score↑

Tune-A-Video (2022) 25.64 92.42 20.09
VideoComposer (2023b) 27.66 92.22 20.26
Control-A-Video (2023) 26.54 92.63 19.75
VideoCrafter (2023) 28.03 92.26 20.12
MotionDirector (2023b) 27.82 93.00 20.74
VMC† (2023) 25.53 94.58 19.92
Gen-1 (2023) 28.54 95.77 -
MotionClone† (2024) 27.23 92.88 21.07
MotionMatcher (2025b) 30.43 97.20 -
Ours-ModelScope 28.16 96.42 20.77
Ours-Latte 31.96 97.19 21.68
Ours-CogVideoX 30.14 98.11 21.09

Table 2: Comparison with previous SOTA motion cus-
tomization methods on the TGVE benchmark. Our timestep
constraining method achieves leading performance without
auxiliary modules or stages, and is also compatible to be in-
tegrated with existing pipelines. † denotes the methods that
were tested on other datasets and we re-evaluated on the
TGVE benchmark for fair comparison.

consecutive frames. Pick Score (Kirstain et al. 2023) trained
a model to emulate human preferences of prompt alignment.
Every editing prompt produces 4 random samples, on which
the metrics are averaged over.

Results
We experiment with choices for the temporal tuning threhsh-
old τ in our motion customization method. We present these
results in Tab. 1, using LoRA fine-tuning with a rank and
alpha r = α = 4. It displays that the optimal τ consistently
align with the peak threshold of the spatiotemporal decom-
position property in Fig. 2 for each base model. Meanwhile,
the precise value of τ does not make a significant difference
for the final motion customization performance around the
optimum, demonstrating the robustness and generalization
of our method for practical use.

ModelScope and Latte have separate spatial and tem-
poral attentions in their denoising networks, while Mod-
elScope denoises with U-Net and Latte denoises with trans-
former. The overall performance of Latte surpasses Mod-
elScope due to its advanced architecture and larger model
size. CogVideoX is built with unified 3D spatiotemporal
attentions, which natively deepen the entanglement of ap-
pearance and motion information. Despite this, our timestep
constrained method still achieves leading performance at
τ = 950 over all other configurations. This value is sig-
nificantly larger than other base models as the core motion
signals need to be decomposed with a stronger constraint.

In addition, we also list the performance of two baselines
for each base model: tuning at all timesteps without a con-
strained range (τ = 0), and the base model without any tun-
ing (τ = 1000). Their performance gaps behind our timestep
constrained method indicate the effectiveness of tuning the
motion customization module only at early timesteps, where



Tunable
Layers

Text
Alignment↑

Temporal
Consistency↑

Pick
Score↑

Q, K, V, O 31.69 97.19 21.68
V, O 32.64 97.16 21.62

Table 3: Ablating temporal attention layers with Latte at
τ = 700. By only fine-tuning value and output projections
in each attention layer, we cut the number of trainable pa-
rameters in half and achieve essentially comparable results.

motion information is dominantly encoded.

Comparison to Prior SOTAs. We compare our method
with various base models at their optimal τ to other one-
shot motion customization approaches that have reported
metrics on the TGVE dataset. Our motion customization ap-
proach yields superior quantitative results to prior SOTAs
with a much simplified tuning module and pipeline. Fig. 4
exhibits a visualization of the qualitative comparison. Our
method transfers the reference motion to new subjects and
backgrounds with minimal semantic discrepancy compared
to other approaches.

Downstream Extensions
Ablating Attention Layers. Based on our findings of mo-
tion disentanglement across timesteps, we are interested in
exploring whether motion control can be limited to specific
model parameters as well. Given the four query, key, value,
and output projections of temporal attention layers, we ex-
periment with restricting training to all possible subsets of
these parameters. From our results in Tab. 3, we see that only
training the value and output projections is necessary for
motion customization. In our experiments, we also observe
that training only the query and key parameters yields no no-
ticeable change in the generated videos. This suggests that
the query and key parameters in temporal attention layers
are not responsible for encoding motion information. This
allows for cutting the number of trainable parameters in half
without sacrificing generation quality.

Scaling LoRA Rank and Direct Tuning. Prior work usu-
ally suffers from increased temporal LoRA rank, as more
tunable parameters will more easily overfit on unwanted
appearances from the single reference video. We scale the
LoRA rank up to r = 16. Moreover, we further extend our
method to direct full-parameter fine-tuning. Previous suc-
cessful approaches for direct training follow DreamBooth
(Ruiz et al. 2023) and require multiple reference samples,
as well as a regularization set of general data, to avoid both
overfitting on the exemplar appearances or motions. We in-
stead maintain our settings of only tuning the attention lay-
ers on a single reference video, without any additional data.
The direct tuning can be viewed as a full-rank upper bound
where the LoRA rank scales to the same as that in the pre-
trained base model.

We present the results in Tab. 4. It contradicts the trivial
hypothesis that more parameters always lead to improved
one-shot motion customization results. We attribute this to

LoRA
Rank

CLIP
Score↑

Temporal
Consistency↑

Pick
Score↑

r = α = 4 31.69 97.19 21.68
r = α = 8 31.61 97.17 21.63
r = α = 16 31.34 97.12 21.57

All attentions 31.19 97.23 21.46

Table 4: Scaling up LoRA ranks and direct full-rank tuning
with Latte at τ = 700. While more tunable parameters con-
tribute marginally to motion customization quality improve-
ment due to limited temporal signals to model in a single
video, our spatiotemporal disentanglement property consis-
tently prevent additional parameters from overfitting on the
appearance in the reference video.

the limited motion information in a single video, which
doesn’t need many parameters to model. On the other hand,
this observation also demonstrates the clear spatiotempo-
ral disentanglement of our method, where no appearance is
leaked into the tunable module even when much more than
necessary parameters are being tuned with the full recon-
struction denoising loss, in contrast to traditional Dream-
Booth pipeline.

Future Work

In this work we focus on the binary disentanglement
between appearance and motion information along the
timesteps. This separation facilitates downstream tasks that
demands dedicated processing of either spatial or tempo-
ral signals. Given the fact that Gaussian noise gradually de-
stroy from high to low frequency in diffusion, similar to the
global and local spatial features in image models, different
categories of motions may be encoded at relatively different
timesteps within the overall early stage. Such finer-grained
temporal processing can further enable more precise motion
editing and transfer. We leave this to future exploration.

Conclusion

We investigated how temporal and spatial information are
organized along the denoising trajectory of text-to-video
diffusion models. By partially resampling with controlled
prompt edits and evaluating appearance editing against mo-
tion preservation, we showed that motion is encoded primar-
ily in early timesteps whereas appearance is consolidated in
later timesteps. This behavior emerges consistently across
different architectures, which enables a practical separation
of temporal and spatial factors in timestep space. Building
on this insight, we proposed a simple one-shot motion cus-
tomization procedure that constrains both training and infer-
ence to early steps and attains high-quality motion transfer
without auxiliary modules or tailored losses. These results
demonstrate that timestep-aware scheduling is an effective
and broadly applicable lever for control and adaptation in
video diffusion models.
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Experiment Details
We fine-tune the base T2V models at their original training
learning rates. A higher learning rate can shorten the conver-
gence time while taking the risk of overfitting. We sample
the customized videos at the original guidance scale of each
base model. Our timestep constrained method enables stable
and efficient tuning with only a single stage and a single mo-
tion customization module to train. All of our experiments
are conducted on a single NVIDIA A6000 GPU in less than
10 minutes.

Additional Results
We visually compare our timestep constrained method with
more previous SOTA appraoches, VMC (Jeong, Park, and
Ye 2023) and MotionClone (Ling et al. 2024), in Fig.

We present additional generation results of our timestep
constrained method in Fig. 6.

User Study
We further conduct an user study to compare motion fidelity
and motion diversity of the output videos in the motion cus-
tomization task, which are ambiguous to measure with au-
tomatic metrics. We compare our method to three previous
SOTA approaches under human evaluation: VMC (Jeong,
Park, and Ye 2023), MotionDirector (Zhao et al. 2023b) and
MotionClone (Ling et al. 2024).

In our questionnaire, we randomly select 10 reference
videos and their new editing prompts, with two output
videos of all 4 methods. We ask the evaluators to pick the
best methods in terms of motion fidelity, which is defined
as the temporal similarity between the output and reference
videos, and motion diversity, which is defined as the tem-
poral variety between the two output videos. Note that Mo-
tionClone replicate the reference motion conditioned on the
latent frame features, and therefore yields deterministic re-
sults, so we only present one output video for it.

Our user study involves 30 participants, each with a ran-
dom set of questions, and we collected 289 valid answers in
total. The top pick rates of all methods are listed in Tab. 5.
Our timestep constrained method outperforms previous SO-
TAs in both benchmarks.

Method Motion
Fidelity(%) ↑

Motion
Diversity(%) ↑

VMC (2023) 3.8 10.7
MotionDirector (2023b) 19.4 35.6
MotionClone (2024) 31.8 0
Ours 45.0 53.6

Table 5: The top preference rates of our and previous meth-
ods in the user study. Note that MotionClone is a determin-
istic approach and thus results in no motion diversity.



Man airbrush painting a horse on a wall.

Man airbrush painting a turtle on a wall, very realistic.

Ours

MotionClone

VMC

An airplane flies through the blue sky leaving a contrail behind it.

A helicopter flies through the blue sky leaving a contrail behind it.
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Figure 5: Additional qualitative comparison of our motion disentanglement customization method to MotionClone and VMC.



A man is surfing inside the barrel of a wave.
on a wave made of aurora borealis

Drone flyover of the Eiffel Tower in front of the city.
Canadian National Tower, surrounded by martian desert

A colourful fireworks display in the night sky.
above the city skyline, 8-bit pixelated

Two grey sharks swim in the blue ocean on a coral reef.
quadrotor drones

A street artist paints a picture of a woman.
+ in anime style

A grey seagull flies in a colorless blue sky.
white + with a cityscape below

Figure 6: Additional qualitative comparison of our motion disentanglement customization method.


